EPIMERIC 2-NORBORNYL CATIONS IN THE SOLVOLYSIS OF 6-exo- AND 6-endo-SUBSTITUTED

2-exo-NORBORNYL p-TOLUENESULFONATES

Cyril A. Grob* Bettina Günther, Reinhard Hanreich & Adrian Waldner,
Institute of Organic Chemistry, University of Basel,
St. Johanns-Ring 19, CH-4056 Basel, Switzerland.

Summary. Solvolysis of 6-exo- and 6-endo-substituted 2-exo-norbornyl tosylates \underline{l} and $\underline{3}$, respectively, yields identical or different product mixtures depending on the inductive effect of the substituent, indicating that induction involves graded δ -participation.

As recently reported, 6-exo-substituents control the solvolysis rates of 2-exo- and 2-endo-norbornyl tosylates, $\underline{1}$ and $\underline{2}$, respectively, by their inductive effects, unless the substituents are electrofugal groups (σ -electron donors) which give rise to elevated rates. In all cases, however, polar effects are transmitted more strongly in the 2-exo- series $\underline{1}$ than in the 2-endo- series $\underline{2}^{-1}$. Also, hydrolysis of $\underline{1}$ and $\underline{2}$ leads to a wider range of products than is often assumed $\frac{2}{3}$.

In continuation of these studies a series of 6-endo-substituted 2-exo-norbornyl tosylates $\underline{3}$, b - h, (TABLE) has been prepared in order to compare the effects of 6-endo substituents upon rates and products with those of the 6-exo substituents in $\underline{1}$, b - h. This comparison has provided a deeper insight into the nature of 2-norbornyl cations.

C(6)-epimeric pairs of $\underline{1}$ and $\underline{3}$, b, c and d $\underline{^3}$, reacted at similar rates in 80% ethanol, as shown by the ratios k $\underline{1}/k$ $\underline{3}$ in the TABLE. Also, when reacted in 70% aqueous dioxane, each pair of epimers led to identical ratios of products $\underline{^4}$, which,

TABLE. First order rate constants (s⁻¹) in 80 vol. % ethanol at 70.0° C.

	R =	$\frac{1}{2}$ (6-exo-R)	<u>3</u> (6-endo-R)	k <u>1</u> /k <u>3</u>
a)	Н	3.58×10^{-2}	3.58×10^{-2}	1
b)	CH ₃	1.09×10^{-2}	5.58×10^{-3}	1.95
c)	(CH ₃) ₂ CH	2.46×10^{-2}	4.32×10^{-3}	5.7
d)	(CH ₃) ₃ C	6.09×10^{-2}	3.40×10^{-2}	1.8
e)	CH ₂ Br	1.06×10^{-4}	2.74×10^{-4}	0.39
f)	F	7.67×10^{-7}	4.68×10^{-7}	1.64
g)	Br	1.51×10^{-7}	1.95×10^{-7}	0.77
h)	CN	1.23×10^{-7}	4.33×10^{-8}	2.84

consequently, have a common origin. These products consisted mainly of tertiary exo-alcohols $\underline{4}$ and the olefins $\underline{5}$ and $\underline{6}$ (total > 50%) beside the secondary 6-exo-2-exo-alcohols $\underline{7}$ and small amounts ($\langle 2\% \rangle$) of the 6-endo epimers $\underline{8}$ 5. Therefore, extensive $C(1) \rightarrow C(2)$ carbon and $C(6) \rightarrow C(2)$ hydrogen shifts must occur in these reactions $\underline{6}$.

The epimeric pairs $\underline{1}$ and $\underline{3}$, e - h, also reacted at similar rates (TABLE) and again showed no clear directional effect of R⁷. In contrast to the above series, however, widely different amounts of rearranged and unrearranged alcohols $\underline{7}$ and $\underline{8}$ and of the olefins $\underline{9}$ and $\underline{10}$ were obtained from each pair of epimers. But none of these products resulted from a $C(6) \rightarrow C(2)$ hydride shift. Furthermore, the cyano derivatives $\underline{1h}$ and $\underline{3h}$ yielded 44 % and 78 %, respectively, of the nortricyclene $\underline{11}$. Consequently, the products of the C(6)-epimers $\underline{1}$ and $\underline{3}$, e - h, do not have identical precursors, as do 1 and 3, e - h. It is also noteworthy that the logarithms of the

FIGURE. Plot of log k for 6-endo-substituted 2-exo-norbornyl tosylates $\underline{3}$ against inductive substituent constants δ_{1}^{q} .

rate constants for 3a - 3h correlate linearly with the inductive substituent constants 6_1^q of R 8 (FIGURE), as was the case with 1a - 1h, leading to reaction constants 9 of -1.76 and -2.0, respectively. Rate control by the inductive effect of R is therefore indicated in both series.

If the relative rates of $\underline{1}$ and $\underline{3}$, a - h, reflect graded shifts of the R-C(6)-C(1) electrons towards C(2) in the transition state 9 , they should also reflect varying degrees of bonding between C(6) and C(2) in the resulting epimeric ion pairs $\underline{12}$ and $\underline{13}$, as indicated by horizontal arrows. Such bonding is usually referred to as bridging or δ -participation 10 and symbolized by dotted lines, as in $\underline{14}$ and $\underline{15}$. The latter, however, are enantiomers and are unlikely to be symmetrically bridged if R is not hydrogen 11 . The fact that $\underline{1}$ and $\underline{3}$, e - h, yield

different products proves that their intermediates are epimers $\underline{12}$ and $\underline{13}$ and not enantiomers. On the other hand, the formation of identical product mixtures from $\underline{1}$ and $\underline{3}$, a - d, shows that the energy barrier separating $\underline{12}$ and $\underline{13}$ 12 is so far lowered that their interconversion by a 1,2 carbon shift becomes faster than all subsequent reactions, i.e. $C(6) \rightarrow C(2)$ hydride shifts and reactions with solvent. The interconversion of the epimers $\underline{12}$ and $\underline{13}$ then likens a skeletal vibration, their chemical behaviour becoming indistinguishable from that of the enantiomers $\underline{14}$ and $\underline{15}$.

REFERENCES

- W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Tetrahedron Letters 1979, 473, 1901, 1905.
- 2) W. Fischer, C.A. Grob, G. von Sprecher & A. Waldner, Helv. Chim. Acta $\underline{63}$, 928 (1980).
- 3) $\underline{1}$ and $\underline{3}$ are racemates, only one enantiomer being shown; $\underline{1a}$ and $\underline{3a}$ are identical.
- 4) Determined by capillary gas chromatography on a carbowax 20 M-coated column; yields reproducible to + 1.5% in at least two separate solvolyses.
- 5) The products from 1b listed in 2) are in error.
- 6) C(6)→C(2) hydride shifts were first detected by J.D. Roberts, C.C. Lee & W.H. Saunders, J. Am. Chem. Soc. 76, 4501 (1954).
- 7) Similar rates were also observed for 5-exo- and 5-endo-cyano-2-exo-norbornyl brosylates by Y. Apeloig, D. Arad, D. Lenoir & P. von R. Schleyer (private communication).
- 8) C.A. Grob, B. Schaub & M.G. Schlageter, Helv. chim. acta 63, 57 (1980).
- 9) C.A. Grob & A. Waldner, Tetrahedron Letters 1980, 4433.
- 10) see "The Nonclassical Ion Problem" by H.C. Brown with comments by P. von R. Schleyer; Plenum Press, New York 1977.
- 11) Symmetrical and unsymmetrical bridging has been discussed recently by P. von R. Schleyer, D. Lenoir, P. Mison, G. Liang, G.K. Surya Prakasch & G.A. Olah, J. Am. Chem. Soc. <u>102</u>, 683 (1980).
- 12) Actually the enantiomer of formula 13.

(Received in Germany 12 December 1980)